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The primary objective of this work is to develop an operational snow depth retrieval algorithm for the FengYun3B Microwave 
Radiation Imager (FY3B-MWRI) in China. Based on 7-year (2002–2009) observations of brightness temperature by the Ad-
vanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow depth from Chinese meteorological stations, we develop a 
semi-empirical snow depth retrieval algorithm. When its land cover fraction is larger than 85%, we regard a pixel as pure at the 
satellite passive microwave remote-sensing scale. A 1-km resolution land use/land cover (LULC) map from the Data Center 
for Resources and Environmental Sciences, Chinese Academy of Sciences, is used to determine fractions of four main land 
cover types (grass, farmland, bare soil, and forest). Land cover sensitivity snow depth retrieval algorithms are initially devel-
oped using AMSR-E brightness temperature data. Each grid-cell snow depth was estimated as the sum of snow depths from 
each land cover algorithm weighted by percentages of land cover types within each grid cell. Through evaluation of this algo-
rithm using station measurements from 2006, the root mean square error (RMSE) of snow depth retrieval is about 5.6 cm. In 
forest regions, snow depth is underestimated relative to ground observation, because stem volume and canopy closure are ig-
nored in current algorithms. In addition, comparison between snow cover derived from AMSR-E and FY3B-MWRI with 
Moderate-resolution Imaging Spectroradiometer (MODIS) snow cover products (MYD10C1) in January 2010 showed that al-
gorithm accuracy in snow cover monitoring can reach 84%. Finally, we compared snow water equivalence (SWE) derived us-
ing FY3B-MWRI with AMSR-E SWE products in the Northern Hemisphere. The results show that AMSR-E overestimated 
SWE in China, which agrees with other validations. 
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Snow cover is a key parameter with significant impact on 
climate, weather and water resources. Given its high albedo 
and melting characteristics, it can greatly alter the surface 
radiation balance, which has pronounced effects on heat and 
moisture fluxes between land surface and atmosphere. Mi-
crowaves can penetrate clouds in the atmosphere and this 
gives the opportunity to derive snow water equivalence 
(SWE) or snow depth information under all weather condi-
tions (Foster et al., 1984). Satellite-borne passive micro-
wave sensors have been used to produce snow cover infor-

mation since 1978, including the Scanning Multichannel 
Microwave Radiometer (SMMR) aboard Nimbus-7, the 
Special Sensor Microwave Imager (SSM/I) on a series of 
Defense Meteorological Satellite Program satellites, the 
Tropical Rainfall Measuring Mission Microwave Imager, 
and the Advanced Microwave Scanning Radiometer-EOS 
(AMSR-E). The Fengyun-3B (FY3B) meteorological satel-
lite was launched on 5 November 2010. Combination of the 
previous four sensors and the Microwave Radiation Imager 
(MWRI) aboard FY3B is expected to provide time series of 
snow cover on land. This represents a new data source for 
the research fields of climate and hydrology. AMSR-E ob-
servation was halted on 4 October 2011. AMSR2 is the 
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successor to AMSR-E, aboard the Global Change Observa-
tion Mission 1st—Water “SHIZUKU” (GCOM-W1). It was 
launched on 18 May 2012. AMSR2 data will be released 
after completion of a calibration and validation phase, 
which will require about one year. FY3B-MWRI is one of 
the major sensors providing surface brightness temperature. 
Associated work developed a semi-empirical snow depth 
retrieval algorithm over China, using the physical relation-
ship between brightness temperature difference and snow 
depth. This technique takes into account different land type 
compositions in the passive microwave footprint. 

Snow cover or snow depth estimation using passive mi-
crowave sensors has been investigated over the past three 
decades. At lower frequencies of the microwave band, 
emission from dry snow cover is mainly affected by under-
lying soil dielectric and roughness properties; however, at 
higher frequencies, emission is sensitive to SWE and snow 
particle size, since volume scattering by snow particles be-
comes important (Hofer et al., 1980; Rott et al., 1991). Cur-
rent SWE algorithms using passive microwave data often 
use linear semi-empirical regression between brightness 
temperature difference and snow depth (Chang et al., 1976, 
1987; Hallikainen et al., 1992). The most used frequencies 
are 36 GHz (or 37 GHz) and 18 GHz (or 19 GHz). Foster et 
al. (1997) improved SWE mapping in forest areas by in-
corporating forest fraction. Tait (1998) estimated SWE in 
16 land cover categories, using SSM/I brightness tempera-
ture and in situ snow depth data from sites in the United 
States and Russia. Influences included snow wetness, depth 
hoar, complex mountainous terrain, and dense forest cover. 
Sixteen separate semi-empirical SWE models for each cat-
egory were established, using the brightness temperature 
difference between 19, 36 and 85 GHz. Their results 
showed that SWE errors for surface cover without melting 
or depth hoar that are non-forested and noncomplex are 
smallest among all ground types, with correlation coeffi-
cient 0.75. SWE estimated over land surfaces covered by 
wet snow, depth hoar and non-forested and complex moun-
tainous terrain had large errors, with correlation coefficient 
0.22. This demonstrated the effect of land surface types on 
SWE retrieval. Singh et al. (2000) improved a SWE algo-
rithm for the Red River Basin of North Dakota and Minne-
sota by incorporating elevation and atmospheric tempera-
ture and precipitable water, and by removing areas affected 
by large water bodies and depth hoar. Derksen et al. (2005) 
developed land cover sensitivity SWE retrieval algorithms, 
applying them to both SMMR and SSM/I data in Canada. 
At each grid cell, SWE estimates were the sum of values 
from four individual land cover algorithms (deciduous forest, 
coniferous forest, spare forest, and open prairie), weighted by 
the percentage of each type. For the tundra area, Derksen et  
al. (2010) developed an algorithm dependent only on V-  
polarization brightness temperature in the 37 GHz channel, 
using winter observations from March 2002– July 2006. 

SWE retrieval algorithms for China have been studied 

during the past two decades. Cao et al. (1993) adjusted the 
coefficients of Chang’s algorithm (Chang et al., 1987) for 
western China, using SSMR brightness temperature. Using 
digital elevation model (DEM) data, they classified five 
areas: high mountains, plateau, low mountains, rolling hills 
and basin. Che et al. (2008) modified Chang’s algorithm 
using 1980–1981 ground observations for SSMR, and 2003 
for SSM/I. They considered influences of vegetation, wet 
snow, precipitation, cold desert and frozen ground on snow 
depth estimation. Root mean square errors (RMSE) of their 
estimates were 6.22 and 5.22 cm for SSMR and SSM/I, 
respectively. 

It has been demonstrated that snow cover is important in 
modifying regional and possibly remote climate by chang-
ing the surface energy balance, because the calculated sur-
face albedo of snow surfaces depends on the snow cover 
fraction. There are empirical relationships between snow 
depth and snow fraction in general circulation model (GCM) 
grid cells or sub-grid cells (Liston, 2004; Wu et al., 2004). 
Wu et al. (2004) quantified snow cover fraction parameter-
ization in a GCM using snow depth generated via SSMR 37 
GHz and 18 GHz channels. Sun (2007) and Chang et al. 
(2009) developed an empirical snow depth algorithm using 
AMSR-E, by incorporating MODIS 8-day snow-covered 
fraction data (MYD10A2). In the work of Sun (2007), Chi-
na was divided into three snow regions. The semi-empirical 
snow depth retrieval algorithms for these regions were de-
veloped individually. In the Xinjiang region, snow fraction 
was integrated into the regression of snow depth retrieval. 
Through validation, estimated error decreased when snow 
fraction was included. Using the work of Sun (2007), Chang 
et al. (2009) improved snow depth retrieval techniques for 
four different land types, using MODIS land cover product 
MOD12Q1 V004. The brightness temperature difference 
between 18.7 and 89 GHz is also included in snow depth 
algorithms to detect shallow snow. This algorithm is valid 
with a snow layer thicker than 3 cm. Its RMSE is small, 5.6 
cm. However, this algorithm is unsuitable for monitoring 
snow cover in real time, since it requires 8-day MODIS 
snow cover data (MYD10A2). 

To estimate real-time snow depth, we propose a semi- 
empirical algorithm using only passive microwave remote 
sensing observations. We use a land use/land cover (LULC) 
map from 2000 (with grid cell size 1 km×1 km) from the 
Data Center for Resources and Environmental Sciences 
(RESDC), Chinese Academy of Sciences. Based on 7-year 
(2002–2009) observations of brightness temperature 
(AMSR-E) and snow depth (from meteorological stations) 
in China, we developed a semi-empirical snow depth algo-
rithm for FY3B-MWRI.   

1  FY3B-MWRI 

The FY3B satellite with microwave radiation imager 
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(MWRI) has the purpose of detecting rain rate, cloud water 
content, total water vapor, soil moisture, sea ice concentra-
tion, sea surface temperature, and snow depth. Tables 1 and 
2 list operational parameters of the AMSR-E and FY3B- 
MWRI sensors, respectively. The sensors have similar per-
formance settings, except that FY3B-MWRI is missing the 
6.925 GHz channel, and its spatial resolution and sensitivity 
are lower than that of AMSR-E. However, FY3B-MWRI 
data are easily accessible to domestic users, making it pos-
sible to produce higher temporal resolution estimates in the 
China area. This work will not only help accelerate im-
provement and development of the domestic passive mi-
crowave sensor instrument, but also promote applications in 
snow disaster monitoring. 

We develop a semi-empirical snow depth retrieval algo-
rithm based on characteristics of the FY3B-MWRI sensor. 
However, because FY3B-MWRI has provided passive mi-
crowave brightness temperature data only since December 
2010, it is not possible to develop a reliable statistical re-
gression based on the limited data from the FY3B-MWRI 
project thus far. AMSR-E and FY3B-MWRI cross the 
equator in a descending mode at about 1:30 p.m. local time. 
Hence, AMSR-E data can substitute for FY3B-MWRI to 
establish a statistical snow depth regression algorithm for 
the latter instrument. From Tables 1 and 2, it is seen that the 
sensitivity, noise and footprint size of the MWRI sensor are 
not as good as those of AMSR-E. However, Yang et al. 
(2011a, 2011b) used a double-difference method to evaluate 
MWRI with WINDSAT. Biases were generally less than 2 
K. From comparison of FY3B-MWRI with AMSR-E, mean 
bias between the two sensors is about 0.13–2.13 K, with 
maximum bias −2.19 K in the 37-H and 89-H channels 

(Yang et al., 2011b). FY3B-MWRI observation accuracy is 

affected by many factors, such as receiver gain drift, stand-
ard calibration source brightness temperature accuracy, cal-
ibration accuracy, and efficiency of the main antenna beam. 
Therefore, Sun (2007) accounted for sensitivity of the cur-
rent SWE algorithm to the sensor configuration of FY3B- 
MWRI by adding ±6 K Gaussian noise to the brightness 
temperature. Through testing AMSR-E official SWE prod-
ucts, RMSE was found less than 4.6 mm. There was more 
sensitivity to negative noise than positive. Expected SWE 
accuracy of AMSR-E is reported at 20% (or 10 mm). 
Therefore, FY3B-MWRI observation bias with respect to 
AMSR-E should not affect snow depth retrieval accuracy. 
Thus, the snow depth estimation technique established by 
combining AMSR-E data with ground snow depth meas-
urements can be directly applied to FY3B-MWRI. 

2  Theory 

The passive microwave brightness temperature of snow- 
covered terrain is influenced by numerous factors other than 
amount and structure of snow, which include soil properties, 
vegetative cover and atmospheric conditions (Foster et al., 
1984). Scattering of dry snow cover dominates at high mi-
crowave frequencies. At low frequencies (snow-particle size 
much smaller than wavelength), absorption is the primary 
loss, whereas at high frequencies (snow-particle size of the 
same order of magnitude as wavelength), scattering domi- 
nates. Based on the radiative transfer model and Mie scat-
tering theory, scattering is extremely sensitive to changes in 
grain-size; for a snow particle of diameter 1 mm, scattering 
dominates at frequencies above 15 GHz (Ulaby et al., 1981). 
Given the sensitivity of snow depth and water volume at  

Table 1  The operating characteristics of AMSR-E 

Frequencies (GHz) 6.925 10.65 18.7 23.8 36.5 89 

Footprint size (km) 75×43 51×29 27×16 32×18 14×8 6×4 

Beamwidth (MHz) 350 100 200 400 1 000 3 000 

Polarization V/H V/H V/H V/H V/H V/H 

Sensitivity (K) 0.34 0.7 0.7 0.6 0.7 1.2 

Accuracy (K) 1 1 1 1 1 1 

Incidence angle (°) 55 

Swath width (km) 1445 

Table 2  The operating characteristics of FY3B-MWRI 

Frequencies (GHz) 10.65 18.7 23.8 36.5 89 

Footprint size (km) 51×85 30×50 27×45 18×30 9×15 

Beamwidth (MHz) 180 200 400 900 2300 

Polarization V/H V/H V/H V/H V/H 

Sensitivity (K) 0.6 1 1 1 2 

Accuracy (K) 1.2 2 2 2 2.8 

Incidence angle (°) 53 

Swath width (km) 1400 
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different frequencies, the brightness temperature difference 
of 18.7 and 36.5 GHz is used to estimate SWE. Since there 
is extensive coverage of shallow snow depths in China, we 
used the 89 GHz channel to detect such shallow snow. 
Shuman et al. (1993) found that the polarization ratio at 37 
GHz (TB37V/TB37H) changed distinctly during periods of sur-
face hoar and depth hoar formation. Koenig et al. (2004) 
improved SWE estimation in Alaska, USA using SSM/I by 
incorporating the polarization difference of 37 and 85 GHz, 
because of its strong sensitivity to depth hoar. This is be-
cause the scattering character of depth hoar is similar to that 
of surface hoar, and the existence of hoar increases reflec-
tivity at H-polarization but has no impact on V-polarization. 
Therefore, when the snow surface is covered with depth 
hoar, use of the polarization difference between 37 and 89 
GHz improves SWE estimation. If average monthly air 
temperature is less than −10°C and snow depth less than 
0.1–0.5 m, depth hoar forms between the snow and ground 
surface (Koenig et al., 2004). Average monthly temperature 
of the Qinghai-Tibet Plateau and Xinjiang from December 
through February is usually colder than −10°C, and there is 
deep depth hoar across most of these areas. In addition, the 
brightness temperature difference between 18.7 and 10.7 
GHz has strong sensitivity to deep snow (Derksen, 2008; 
Kelly, 2009). Therefore, four frequencies are used to establish 
the snow depth statistical regression algorithm for China. 

Given the coarse footprint (tens of km) of a satellite mi-
crowave radiometer, measured brightness temperature usu-
ally represents several land cover types. This mixed-pixel 
problem is the dominant limitation on snow depth and SWE 
estimation accuracy using passive microwave measure-
ments. These measurements have a similar problem caused 
by spatial heterogeneity. The physical process of emission, 
given by the Planck equation, requires a large microwave 
radiometer pixel with sufficiently high number of photons 
to measure. Different land cover types will affect the ag-
gregation and distribution of snow. There are studies that 
have obtained snow depth over different forest types 

(Derksen et al., 2005; Goita et al., 2003). Derksen et al. 
(2005) acquired snow depth at a satellite pixel, through 
summarizing sub-grid cell snow depth for each land cover 
type. Our snow depth algorithm for China is developed us-
ing a mixed-pixel decomposition technique. 

According to the LULC map, the land surface is divided 
into four types: grassland, farmland, bare ground, and forest. 
At each grid cell, snow depth is estimated from the sum of 
snow depth values from each land cover algorithm, 
weighted by the percentage of land cover type within each 
grid cell: 

SD=fgrass×SDgrass+ fbarren×SDbaren+ fforest×SDforest 

+ ffarmland×SDfarmland,              (1) 
where fgrass, fbarren, fforest, and ffarmland are area fractions of 
grassland, bare ground, forest, and farmland in each grid 
cell, respectively. SDgrass, SDbarren, SDforest, and SDfarmland are 
snow depths for each type, from the snow depth retrieval 

algorithm at the pure pixel. We assume that a pixel is pure 
when a certain cover type comprises more than 85% of its 
total area.  

3  Data and processing 

The data used include the year 2000 1-km LULC map, 
in-situ snow depth and surface temperature measurements, 
plus AMSR-E brightness temperature. All these data were 
reprojected into a Lambert azimuthal equal-area projection 
(Table 3). The spatial coverage is 15.5°–51.5°N and 64.5– 
123.5°E. Grid cell size is 23.1656 km × 23.1656 km.  

3.1  LULC map 

The LULC data is freely available from the RESDC. The 
data are in ESRI ArcInfo GRID format, with ground pixel 
size 1 km×1 km, and derived from 30 m Thematic Mapper 
(TM) imagery classification. The LULC classification sys-
tem corresponds to national first-level and second-level 
classification standards. There are 25 land cover types in all, 
including farmland, woodland, grassland, water body, and 
residential area. Area percentages of each land cover type in 
China are presented in Table 4, which shows that the major 
types are grassland, farmland, bare ground, and forest. 
Hence, the snow depth statistical inversion algorithm for 
these four main land cover types is established first. 

Figure 1 shows maps of grassland, forest, farmland and 
bare ground. Because these maps were derived from 30-m 

Table 3  The map projection for snow depth product used in China  

Parameters Value 
Projection Lambert azimuthal equal area 

False easting 0 
False northing 0 

Central meridian (°) 100 
Latitude of origin (°) 45 

Linear unit meter 
Datum WGS-1984 

Table 4  Percentage of each land cover type in 2000 LULC map 

Land type Percentage (%) 
Grassland 31.7 
Farmland 18.94 

Bare rock and Gobi desert 11.48 
Sandy land 6.33 

Forest 18.06 
Shrub 5.55 

Saline soil 1.44 
Cities 1.81 

Wetlands 0.86 
Others 0.97 

Water bodies 1.55 
Permanent ice and snow 0.73 

Beaches 0.53 
Shoals 0.06 
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Figure 1  (a) Grassland map in 2000; (b) forest map in 2000; (c) farmland map in 2000; (d) map of bare ground in 2000. 

(To be continued on the next page) 
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TM imagery, they can be recalculated as percentages of 
each land cover type in 25 km grid cells. Furthermore, the 
China vegetation atlas confirms that the RESDC LULC map 
describes the surface in the region more accurately than its 
MODIS counterpart. 

From the grassland percentage map (Figure 1(a)), the 

LULC data show that grasslands of the Qinghai-Tibet and 
Yunnan-Guizhou plateaus are substantially more consistent 
with vegetation maps. From the forest percentage map (Fig-
ure 1(b)), Northeast China has the important natural forest 
areas, especially in the Daxinganling, Xiaoxinganling, and 
Chang-baishan mountains. The LULC data provide a good 
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overview of the distribution of these forests. From the 
farmland map (Figure 1(c)), farmland is mainly across 
Northeast and Southeast China. Bare ground coverage is 
concentrated in the northwest (Figure 1(d)), consistent with 
the actual surface distribution. 

Although the LULC map is about ten years older than 
data input to our SWE retrieval models, it appears to work 
well for our purposes, because that map has changed little 
over the past decade. Since we did not acquire the latest 

Chinese LULC maps, we used the MODIS International 
Geosphere Biosphere Programme (IGBP) products to inves-
tigate changes over the period 2001–2010, in particular 
MODIS land cover type product MCD12Q1. MCD repre-
sents land cover produced from combination of two MODIS 
sensors on both Aqua and Terra. Its spatial resolution is 500 
m (Collection 5 product). Figure 2 shows MODIS land cov-
er maps in 2001 and 2010. It is seen that there was 15.12% 
forest, 39.58% grassland, 19.59% farmland, and 25.71%  

 
 

 

Figure 2  Land cover maps of MODIS IGBP products. (a) 2001; (b) 2010. 
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bare ground in 2001. In 2010, corresponding areal percent- 
ages were 17.99%, 37.01%, 20.12%, and 24.88%. Between 
2001 and 2010, maximum change was about 2% for forest 
and grassland regions. Areas of farmland and bare ground 
changed even less, both smaller than 1%. The most obvious 
changes of LULC over the period were mainly in Northeast 
and Central China. Forest percentages in both regions in-
creased over the period, while farmland varied little. We 
conclude that such land cover change over nearly 10 years 
is negligible for our SWE retrieval. Therefore, it is reasona-
ble to use the 2000 RESDC LULC map version as land 
classification input data to develop our snow depth retrieval 
algorithm. 

3.2  Weather station observations 

Weather station data were acquired from the National Me-
teorological Information Center, China Meteorology Ad-
ministration (CMA). Data from 753 stations (Figure 3) were 
used. The observation period is from 2002-06-01 to 
2009-12-11. Recorded variables include site name, observa-
tion time, site location (latitude and longitude in degrees), 
geodetic elevation (m), surface temperature, snow depth 
(cm), and snow pressure (g cm−2). A month field of “999” 
means a missing snow depth observation for that month; an 
“888” indicates no snow, and a “988” denotes little snow. 

Sites were selected from three seasonal snow cover re-
gions, mainly in Xinjiang, Northeast China and Inner Mon-
golia, and the Tibetan Plateau. There are few snowfalls in 
southern China, which are usually in the form of wet snow. 
Here, there are also vast and widely distributed water bodies. 
Hence, only a few stations in southern China were chosen 
for snow depth retrieval algorithm development. To ensure 
snow depth data for solely dry snow, only measurements 
from late October through March were used. 

Observation data quality control was done using several 

criteria. Records with missing information were deleted, 
and records were selected only if surface temperature was 
less than 0°C (to avoid the impact of wet snow) and snow 
pressure greater than 0 g cm−2. Then, the site data were 
reprojected into the Lambert equal-area projection, to match 
the AMSR-E L2A (Level-2A) brightness temperature data 
and LULC map. 

3.3  Passive microwave brightness temperature data 

The AMSR-E L2A brightness temperature dataset was 
downloaded from the National Snow and Ice Data Center 
(NSIDC). It contains brightness temperatures at 6.9, 10.7, 
18.7, 23.8, 36.5, and 89.9 GHz frequency channels. Data 
grids were resampled to be spatially consistent, and are 
available at various spatial resolutions corresponding to 
footprint size of the observations, such as 56, 38, 24, 21, 12, 
and 5.4 km. Data are stored in Hierarchical Data Format- 
Earth Observing System (HDF-EOS) format. 

To correspond with the ground data period, the bright-
ness temperature data are from 2002-06-01 to 2009-12-11. 
Spatial resolution of AMSR-E L2A brightness temperature 
for each frequency is Resolution 2 (about 37 km). Data 
from 2006 were used for algorithm validation, and data 
from other years used for algorithm development. 

Geographic location information of stations was used to 
search corresponding brightness temperature pixels in 
AMSR-E imagery. Here, we used the nearest neighbor 
searching algorithm to find the pixel over the ground station 
location. AMSR-E L2A brightness temperature data points 
were binned into one Lambert equal-area grid via the near-
est neighbor method. 

There are three and half granules of AMSR-E brightness 
temperature data covering China each day. Hence, there are 
missing data in daily snow depth mapping of the country. 
Therefore, not all daily snow depth ground observations are  

 

 

Figure 3  China meteorological stations used in this work. 
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matched with corresponding microwave brightness temper-
ature data. 

4  Algorithm development 

Snow has a scattering behavior similar to frozen soil, cold 
desert and rainfall (Grody, 1991; Grody et al., 1996). Thus, 
the impact of these should be excluded before estimating 
snow depth. The snow depth inversion technique is based 
on emission characteristics of dry snow at different fre-
quencies. Consequently, accuracy of the linear regression 
algorithm depends on determination of dry and wet snow 
conditions. 

Grody et al. (1996) developed a global snow identifica-
tion method using SSM/I measurements. This method was 
used in deriving the AMSR-E official SWE product (Kelly, 
2009). Li et al. (2007) improved Grody’s method (Grody et 
al., 1996) with SSM/I data and ground station observations 
in China. With approximately 6-year snow measurements 
from these stations and operational snow cover products for 
Inner Mongolia from the National Satellite Meteorological 
Center (NSMC) of China, they developed a modified 
method for the China region. A new index, (TB22v–TB85v)− 
(TB19v–TB37v), was added. This effectively reduced the in-
fluence of frozen ground on snow depth estimation on the 
Qinghai-Xizang Plateau. Hence, we applied Li’s snow cov-
er identification method (Li et al., 2007) to remove scatter-
ing signals from frozen ground, cold desert and rainfall in 
the development of our snow depth retrieval. Brightness 
temperature data were used to establish the regression snow 
depth algorithm only when a grid cell was determined to 
have dry snow cover. 

With water bodies within a snow-covered grid cell, satel-
lite-observed brightness temperature decreases significantly 
because of the low emissivity of water. This reduces the 
difference of brightness temperature between 18.7 and 36.5 
GHz. This is opposite the TB19–TB37 of dry snow cover. 
Therefore, a large water body in a grid cell produces large 
error in snow depth retrieval. The land-ocean-coastlines-ice 
(LOCI) mask was therefore used to remove data of pixels 
containing water bodies. 

There are few relatively pure pixels at pixel size 25 km, 
so it is difficult to establish a regression algorithm for a sin-
gle land cover type Therefore, if a land cover percentage 
was greater than 85% within one grid cell, we assumed this 
cell to be a pure pixel of that cover type. 

Moreover, there is no snowmelt status (wet/dry) infor-
mation in ground observations. Wet snow usually occurs in 
early winter or late spring melt periods. Records of either 
daily maximum air temperature or maximum surface tem-
perature greater than 0°C in ground-based observation rec-
ords were excluded, to remove the effect of wet snow on the 
snow retrieval algorithm. During the snow depth inversion, 
wet snow is included but flagged as such. 

All frequencies, 10.7, 18.7, 36.5 and 89 GHz at both po-
larizations, were used for the regressions of empirically 
derived algorithms. The 10.7 and 18.7 GHz channels are 
sensitive to underground surfaces, and 36.5 GHz is sensitive 
to snow volume scattering. The 89 GHz channel was added 
because of its penetrability of shallow snow. After remov-
ing wet snow and other scattering, there were about 60% of 
records with snow depths less than 10 cm remaining from 
the original data. These data were used for snow depth in-
version algorithm development. 

The snow depth regression algorithm was formulated 
using 7 years of observations (2002–2005 and 2007–2009). 
Observations from 2006 were used to validate the new al-
gorithm. 

Through statistical regression analysis of various under-
lying “pure” land cover surfaces, we determined a snow 
depth inversion algorithm for the four land types. These 
regressions are as follows. 

SDfarmland=4.235+0.432×d18h36h+1.074×d89v89h;  
(2(a)) 

SDgrass=4.320+0.506×d18h36h0.131×d18v18h 
+0.183×d10v89h0.123×d18v89h;         (2(b)) 

SDbare soil=3.143+0.532×d36h89h1.424×d10v89v 
+1.345×d18v89v0.238d36v89v;     (2(c)) 

SDforest=11.1280.474×d18h36v1.441×d18v18h 
+0.678×d10v89h0.649×d36v89h;       (2(d)) 

where SDfarmland, SDgrass, SDbare soil, and SDforest are estimated 
snow depths for farmland, grass, bare ground and forest 
surfaces, respectively. The unit of depth is centimeters (cm), 
and d is the brightness temperature difference of two 
frequencies. The numbers 10, 18, 36, and 89 represent the 
AMSR-E frequencies; v is V-polarization, and h is 
H-polarization. For example, d18v36h means the brightness 
temperature difference between 18.7 GHz V-pol and 36.5 
GHz H-pol, i.e., Tb18v−Tb36h. 

Farmland and grass are short vegetation, and their 
contributions to observed emission from snow surfaces are 
small. Therefore, snow depth in farmland and grassland is 
highly correlated with the brightness temperature difference 
between the 18.7 and 36.5 GHz channels. Bare ground 
typically has only shallow snow cover, with the majority of 
snow depths less than 10 cm. Hence, the use of high 
frequency bands (36.5 and 89 GHz) can greatly improve 
depth retrieval for bare soil surfaces. Moreover, the 
brightness temperature difference between 36.5 and 89 GHz 
(Tb36.5−Tb89) is used in eq. (2), because the polarization 
difference at high frequency detects surface hoar and depth 
hoar (Koenig et al., 2004). For forested area, the brightness 
temperature of cross-polarization is more sensitive to snow 
depth than that of co-polarization, owing to the dual effects 
of complex terrain and forest cover. RMSE of the snow 
depth inversion algorithm for four land types is listed in 
Table 5. Although all regressions pass the 95% confidence  
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Table 5  Statistic evaluation of four main snow depth algorithms over four land cover types 

Land cover Regression (R2) Regression RMSE (cm) Regression samples Validation samples Validation RMSE (cm) 

Farmland 0.44 4.36 2888 448 4.51 

Grassland 0.58 3.57 2894 505 2.74 

Bare ground 0.59 2.15 177 40 1.82 

Forest 0.16 5.60 1163 188 6.11 

 
 

level test, the algorithm shows poor performance in forest 
areas. A possible reason may be the relatively poor 
representation of selected meteorological stations in forested 
regions at satellite scales. Further, because emission of the 
forest area increases with frequency, the brightness 
temperature difference shows few variations there. Therefore, 
the snow depth inversion algorithm performs worse for 
forested surfaces than for the other three land types. 

5  Validation of snow depth algorithms 

5.1  Validation of snow depth algorithms for “Pure” 
land types 

Since there was no extreme blizzard or snowstorm in 2006, 
observations from this year were used to evaluate the 
developed algorithms. After identifiying snow cover using 
Li’s method (Li et al., 2007), site observations of pure 
pixels were used to validate the algorithms for each land 

cover type. Comparisons between estimated snow depth and 
ground station observations for grassland, farmland, bare 
ground, and forest cover types are shown in Figure 4, 
respectively, from which it is seen that the snow depth 
inversion algorithms perform better for grassland and 
farmland, since both surfaces are relatively flat and have 
smaller vegetation impacts on the inversion regression. The 
RMSE of snow depth retrieval for grass surfaces is only 
2.74 cm, and 1.82 cm for bare surfaces. Snow depth 
retrieved for forested areas is underestimated compared to 
ground observations. This is because forest cover produces 
a smaller brightness temperature difference between 
frequencies, which limits the algorithm using this difference. 
Another explanation for large retrieval errors over forested 
areas is that both complex terrain and trees have negative 
impacts on retrieval there. Indeed, forests are commonly 
found in mountainous regions, such as the Daxiaoxing’ 
anling and Taihang mountains. Moreover, the emission of 
forest depends on stem volume, canopy closure, and others.   

 
 

 
Figure 4  (a) Comparison of estimated and observed snow depths in different land surfaces. (a) Grassland; (b) bare ground area; (c) farmland; (d) forest. 
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The physical relationship between them is still unclear in 
current emission models, so more study is needed before 
such factors can be incorporated in the retrieval algorithms. 

Table 5 gives the RMSE of snow depth for the four land 
types. There were few samples of bare ground for algorithm 
regression and validation (only forty for the validation). 
RMSE is about 2 cm over this ground, and estimated snow 
depth agrees well with station measurements. 

5.2  Algorithm validation for mixed pixels 

To evaluate the overall behavior of the snow depth algo-
rithm in the satellite applications, observational data from 
521 sites in 2006 as mixed pixels were used for algorithm 
evaluation. The number of snow samples for validation was 
3438. A comparison of estimated snow depth with observa-
tions is shown in Figure 5. The RMSE is about 5.6 cm for 
mixed pixels. For shallow snow surfaces, the inversed snow 
depths are scattered. This is because of the complex nature 
of these surfaces and the highly variable composition pat-
terns within a satellite grid. Second, ground stations are 
usually located close to cities and on flat terrain. Thus, sta-
tion observations may not be representative of the average 
snow conditions of the overlying pixel, with its associated 
errors. Third, grid resolution of passive microwave sensors 
is relatively coarse. Sample points in each swath are repro-
jected into a grid of cell size 25 km×25 km, using a 
weighted averaging method. Areas adjacent to the location 
of brightness temperature data will be projected into the 
same grid. Passive microwave pixel resampling error is 
large. The impact of these three factors is not considered in 
current techniques, so further study is required. In addition 
to the evaluation of inversion algorithms with snow depth 
observations using RMSE, we produced a histogram of in-
version error. Figure 6 shows a histogram of retrieved snow 
depth bias, which follows a statistically normal distribution. 
It is seen that bias is within ±5 cm. 
 
 

 
Figure 5  Validation of snow depth retrieval with ground observations 
over mixed-pixels. 

 
Figure 6  Histogram of root mean square error of snow depth over mixed- 
pixels. 

5.3  Evaluation of snow cover retrieval using the de-
veloped algorithm  

The snow depth algorithm was validated with site observa- 
tions, and further evaluated with MODIS daily snow cover 
products for snow cover spatial distribution consistency. 
MODIS daily global climate-modeling gridded snow prod-
ucts (MYD10C1) have 0.05° resolution. We selected the 
data period to be consistent with AMSR-E and FY3B- 
MWRI, from 2010-11-01 to 2011-02-28. For this compari-
son, the snow depth algorithms developed here used both 
AMSR-E and FY3B-MWRI data. A pixel with snow depth 
greater than zero, estimated from the passive microwave 
sensors, was considered snow-covered. MYD10C1 snow 
cover products were converted to the Lambert equal-area 
projection. 

The MODIS daily snow cover product is often contami-
nated by clouds. There were 92.82% of snow pixels so af-
fected, and 24.49% had 80% cloud coverage. During the 
accuracy evaluation using microwave and optical snow 
cover products, it was necessary to account for cloud im-
pacts. The comparisons are detailed as follows. First, we 
ensured that MYD10C1, AMSR-E and FY3B-MWRI all 
covered the same period; second, both optical and micro-
wave snow cover data were resampled to the Lambert pro-
jection. AMSR-E and FY3B-MWRI data that were missing 
or over water bodies were removed. There were 74 match-
ing days between MODIS snow cover and AMSR-E prod-
ucts but only 35 matching days between MODIS and 
FY3B-MWRI, since the swath of the latter is narrower than 
that of the former. Third, MODIS snow pixels were deter-
mined as follows, given the cloud contamination. For snow 
coverage greater than 85% within a pixel, that pixel was 
considered snow-covered; for zero snow coverage and 
cloud amount not in excess of 15%, the pixel was classified 
as snow-free. 

Through comparison of MODIS snow products with 
AMSR-E and FY3B-MWRI, overall accuracy of the 



 Jiang L M, et al.   Sci China Earth Sci   June (2014) Vol.57 No.6 1289 

AMSR-E product was 88.54% and that of FY3B-MWRI 
84.66 %. 

Snow-covered and snow-free classification accuracy of 
AMSR-E was calculated as 

6006 339023
100% 88.54%.

389680


 

 
Snow-covered and snow-free classification accuracy of 

FY3B-MWRI was calculated as 

4110 106796
100% 84.66%.

130998


 

 
Table 6 shows detailed classification accuracies from 

comparisons of AMSR-E and FY3B-MWRI with the 
MODIS daily snow product (MYD10C1). From these com-
parisons, snow cover retrieved accuracy by the proposed 
passive microwave technique was 84%. AMSR-E snow 
cover accuracy was greater than FY3B-MWRI. This was 
because the AMSR-E scanning swath is larger than that of 
FY3B-MWRI, and its spatial resolution greater. Both fac-
tors affect snow cover accuracy. However, both AMSR-E 
and FY3B-MWRI can produce more accurate snow cover 
information than MODIS daily snow cover products. 

5.4  Comparisons of retrieved snow depth and AMSR- 
E SWE products for China and entire northern hemi-
sphere 

SWE estimated using our algorithm for FY3B-MWRI was 
compared with that of the AMSR-E SWE product. 
AMSR-E covers the globe in 2 days, and FY3B-MWRI in 
4–5 days. This results from their difference of observing 
swath. Therefore, AMSR-E and FY3B-MWRI brightness 
temperatures from 1–5 January 2011 were used for the 
comparison. Figure 7 compares their SWE estimates for the 
Northern Hemisphere. There are a total of 67706 pixels, and 
their SWE RMSE is 7.2 mm. Figure 8 shows the corre-
sponding scatter plot, from which it is seen that AMSR-E 
overestimated SWE around China relative to FY3B-MWRI. 
This conclusion is consistent with other studies (Che et al., 
2008; Sun, 2007; Savoie et al., 2009). Their difference is 
because they used different algorithms for the China area. 
Outside China, the FY3B-MWRI scheme used the same 
algorithm as that used by the AMSR-E team. 

To expound the difference of these two algorithms in 
China, station snow depths from winter 2010–2011 were 
investigated. The observed data were from 89 days, between 

1 December 2010 and 28 February 2011. Validation results 
are shown in Figures 7–9. Figure 8 shows error spatial dis-
tribution maps, using data from these two sensors across 
China during the aforementioned period. FY3B-MWRI 
snow depth inversion accuracy is superior to the AMSR-E 
standard snow depth products. The RMSE of FY3B-MWRI 
SWE is within 5 cm. However, those of AMSR-E products 
are clearly greater than those of the ground observations. 
Both algorithms exhibit larger errors in Northeast China, 
Xizang and northern Xinjiang than in central and northern 
regions of the country. This is because deep snow in China 
is usually found in the northeast, Xinjiang, and Xizang re-
gions. Accuracies of FY3B-MWRI and AMSR-E algo-
rithms are both lesser in forest and farmland regions. 
FY3B-MWRI estimation error is less than 10 cm in North-
east China, whereas RMSE of the AMSR-E standard snow 
depth product is greater than 20 cm. Larger errors of the 
FY3B-MWRI snow depth algorithm were in western China, 
such as the Jimunai, Fuyun, Aletai and Taicheng areas, 
which are around big cities. One reason is that urban emis-
sion characteristics are different from other land surfaces. 
The presence of cities in a grid cell strongly impacts the 
brightness temperature of the mixed pixel. The other reason 
is that stations in or near cities are not representative of sat-
ellite spatial grid values. Additionally, snow depth estima-
tion error in areas bordering the Himalayas is large. Accu-
racies of the two algorithms are similar over grassland sur-
faces of the Xizang-Qinghai Plateau. In north-central China, 
both algorithms have good accuracy in grasslands of Inner 
Mongolia, but accuracy is poor in Gansu Province. It was 
found that stations there, such as Wuqiaoling and Menyuan, 
have shallow snow depths of 1–2 cm. Hence the poor per-
formance of these algorithms re found in such areas. 

Overall, the algorithm developed here is superior to that 
of AMSR-E. However, both had better performance in 
grassland than forest regions. 

To investigate time series characteristics of the two algo-
rithms in winter, snow depth between AMSR-E/FY3B- 
MWRI and station observations were compared over the 
period 1 December 2010 to 28 February 2011. Figure 9 
presents the time series comparison. The black line is the 
RMSE time series of AMSR-E estimates, and the blue one 
is that from FY3B-MWRI; the red line is ground observa-
tion. The figure reveals that the algorithms have similar 
RMSE during the period, and that both agree with the 
ground observations. After 20 January 2010, the AMSR-E  

Table 6  Error matrix calculated on comparisons between MODIS snow cover products and AMSR-E, FY3B-MWRI using the method developed in this 
work 

 
AMSR-E FY3B-MWRI 

Snow No snow Sum Snow No snow Sum 

MODIS snow cover 6006 1182 7188 4110 114 4224 

MODIS snow free 43469 339023 382492 19978 106796 126774 

Sum 49475 340205 389680 24088 106910 130998 
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Figure 7  Comparison between FY3B-MWRI estimated snow depth and 
AMSR-E product in the north hemisphere. 

method clearly overestimated snow depth relative to the 
ground observations. RMSE of FY3B-MWRI estimation is 
smaller than that of AMSR-E. RMSE of the algorithms are 
related to snow depth, i.e., RMSE increases with depth. This 
indicates that snow depth algorithms still have problems 
with deep snow cover, especially in forested areas. 

6  Discussions and conclusions 

The FY3 represents a new generation of polar-orbiting me-
teorological satellites. The MWRI aboard the FY3 platform 
is the first microwave radiometer on meteorological satel-
lites. It can effectively monitor the land surface, atmosphere, 
and ocean. This work formulated snow depth algorithms for 
China with the FY3B-MWRI sensor configuration, using  

 

 
Figure 8  Satellite retrieved snow depth RMSE spatial distribution compared with ground snow depth from Dec. 1, 2010 to Feb. 28, 2011. (a) AMSR-E;  
(b) FY3B-MWRI. 
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Figure 9  Time series snow depth RMSE of AMSR-E and FY3B-MWRI with the ground observation from Dec. 1, 2010 to Feb. 28, 2011. Black line: 
AMSR-E RMSE; blue line: FY3B-MWRI RMSE; red line: stations averaged snow depth. 

7-year observations of AMSR-E and ground-based data. A 
linear decomposition technique of mixed pixels was used in 
development of the snow depth retrieval method. The 
LULC map contained 1-km fractional percentage data, and 
was used with FY3B-MWRI in an operational snow depth 
algorithm. In China, principal land cover types are grassland, 
farmland, bare ground, and forest. Based on spatial and 
temporal characteristics of snow depth, the high frequency 
of 89 GHz (sensitive to shallow snow) and low frequency of 
10.7 GHz (sensitive to deep snow) were used in algorithm 
development for pure land cover types. 

Snow depth estimated at satellite radiometer scale was 
summarized for different land surface types, by weighting 
the percentages of land cover types within each grid cell. 
Through validation with ground observations, the snow 
depth retrieval algorithms performed well for grassland and 
farmland surfaces. Snow-depth RMSE of grassland was 
only 2.74 cm, and that of farmland about 4.5 cm. However, 
performance was worst for forested areas, with underesti-
mation of snow depth. Snow depths from both FY3B- 
MWRI and AMSR-E products were evaluated with ground 
measurements from winter 2011. The results show that 
FY3B-MWRI fared better than AMSR-E in China. Estima-
tion accuracy of the former was lowest over forest-covered 
area with complex terrain, such as in Northeast China and 
North Xinjiang. This is because forest canopy weakens 
emission of snow at various frequencies. Forest emission 
increases with frequency. Sensitivity of the brightness tem-
perature difference to snow depth is thereby reduced. Forest 
emission is a function of stem volume, forest closure, and 
canopy density. It is still unclear how to quantify these fac-
tors in algorithm inversion. Another potential reason is that 
forest areas in China are typically in mountainous regions. 
Both vegetation and rugged terrain pose great difficulties to 
accurate snow depth retrieval. 

Wang et al. (2010) evaluated the effect of terrain on 
brightness temperature between 18.7 and 36.5 GHz fre-

quencies, using Guo’s algorithm (Guo et al., 2011). Their 
results show that terrain has less impact on snow depth us-
ing the brightness temperature difference at co-polarization. 
This difference at cross-polarization amplified terrain-  
induced errors in SWE inversion, by as much as 10 K. The 
errors were mainly in contiguous high-altitude mountain 
ranges such as the Altai, Qinghai-Tibet Plateau, and Rocky 
Mountains. Terrain correction was not done in our snow 
depth algorithm. The algorithms for both bare ground and 
forest used cross-polarization brightness temperature dif-
ference, which has some impacts on snow depth estimation 
for complex terrain. Thus, terrain effects for the operational 
snow depth algorithm require further study. This would aid 
the current algorithm for forested areas, by considering the 
effects of terrain, forest volume, closure and canopy density. 

Furthermore, ground station data are not representative 
of average snow conditions within pixels of the passive mi-
crowave sensor. Moreover, because of rapid urbanization in 
China over the past three decades, meteorological stations 
are frequently located close to cities. Also, there are few 
stations on the Tibetan Plateau, with no observations at all 
in vast, unpopulated areas. This does not favor our method, 
which is based on semi-empirical regression relationships 
between ground-based data and satellite measurements. In 
addition, snow depth is shallow in most regions of China; 
90% of all observations were of snow depth less than 20 cm. 
Therefore, the 89 GHz channel that is sensitive to shallow 
snow was incorporated in algorithm development. However, 
this frequency is affected by the atmosphere. It is necessary 
to do atmospheric correction at 36.5 and 89 GHz to improve 
inversion accuracy for snow depth. Some works (Tedesco et 
al., 2006; Wang et al., 2007) in the U.S. improved snow- 
covered area and SWE accuracy after correcting atmos-
pheric effects at 18.7 and 36.5 GHz, using a radiative trans-
fer model and atmospheric sounding data. More study is 
needed for applying current atmospheric correction tech-
niques to the operational snow depth estimation algorithm. 
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Our approach depends only on satellite brightness tempera-
ture observation. Real-time snow depth monitoring will not 
only contribute to improvement of domestic passive micro-
wave sensor instruments, but also to snow disaster monitor-
ing. Snow depth monitoring in real-time is very important in 
decision making for disaster prevention and post-disaster 
reconstruction. 
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