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Abstract: This study compared three broadband emissivity (BBE) datasets from satellite 

observations. The first is a new global land surface BBE dataset known as the Global Land 

Surface Satellite (GLASS) BBE. The other two are the North American ASTER Land 

Surface Emissivity Database (NAALSED) BBE and University of Wisconsin Global 

Infrared Land Surface Emissivity Database (UWIREMIS) BBE, which were derived from 

two independent narrowband emissivity products. Firstly, NAALSED BBE was taken as 

the reference to evaluate the GLASS BBE and UWIREMIS BBE. The GLASS BBE was 

more close to NAALSED BBE with a bias and root mean square error (RMSE) of −0.001 

and 0.007 for the summer season, −0.001 and 0.008 for the winter season, respectively. 

Then, the spatial distribution and seasonal pattern of global GLASS BBE and UWIREMIS 

BBE for six dominant land cover types were compared. The BBE difference between 

vegetated areas and non-vegetated areas can be easily seen from two BBEs. The seasonal 

variation of GLASS BBE was more reasonable than that of UWIREMIS BBE. Finally, the 

time series were calculated from GLASS BBE and UWIREMIS BBE using the data from 

2003 through 2010. The periodic variations of GLASS BBE were stronger than those of 

UWIREMIS BBE. The long time series high quality GLASS BBE can be incorporated in 

land surface models for improving their simulation results. 
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1. Introduction 

Land surface broadband emissivity (BBE) is a key parameter in the estimation of surface energy 

budget and is a common input required for a variety of radiative transfer models [1–8]. Because of 

limited temporal and spectral information on land surface emissivity, a constant BBE assumption or 

simple parameterization schemes are adopted in land surface models and climate models [9–11]. 

Satellite remote sensing is the only means for providing global land surface BBE with certain  

spatial-temporal resolutions. Furthermore, the satellite-derived realistic BBE has demonstrated its 

capability in improving the simulation results of global climate models [10,12]. 

Several BBE datasets have been produced from remote sensing data by using different methods. For 

example, Wilber et al., produced a global BBE (5–100 μm) with 10′ × 10′ spatial resolution for 

satellite retrievals of longwave radiation by assigning constant emissivity values to International 

Geosphere-Biosphere Program (IGBP) land cover types [13]; Ogawa et al., mapped the global monthly 

BBE (8–13.5 μm) by converting the Moderate-resolution Imaging Spectroradiometer (MODIS) 

narrowband emissivity product (approximately 5 km) and a North African BBE (8–13.5 μm) using the 

Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) narrowband 

emissivity product (90 m) [14,15]. Peres et al., produced a global BBE (3–14 µm) map at a 3 km 

spatial resolution by converting the narrowband emissivities retrieved from the Spinning Enhanced 

Visible and Infrared Imager (SEVIRI) onboard METEOSAT Second Generation (MSG) using 

Vegetation Cover Method (VCM) [16]. 

Recently, some researchers have produced a few narrowband emissivity products from which the 

BBE could be obtained by converting it to BBE via a linear regression function [17,18], including the 

North American ASTER Land Surface Emissivity Database (NAALSED) composited from the 

ASTER narrowband emissivity product [19], the University of Wisconsin Global Infrared Land 

Surface Emissivity Database (UWIREMIS) retrieved by adjusting MODIS narrowband emissivity 

product (MOD11) with the proposed baseline fit method [20], and those derived from hyperspectral 

resolution thermal infrared (TIR) data [2,21–24].  

These BBE and narrowband emissivity products share at least two common characteristics:  

(1) either the spatial or temporal resolutions of these products are limited. A few are just a BBE map at 

global or regional scales. There are two narrowband emissivities (summer season and winter season) in 

the NAALSED for the entire nine years (2000–2008). The spatial resolution of MOD11 emissivity 

product is 0.05°, and the spatial resolution of single nadir view of current hyperspectral resolution TIR 

sensors is larger than 10 km [25]. (2) Most of them are not well validated. For example, the BBE 

derived from ASTER, MODIS and SEVIRI narrowband emissivity are not validated [15,26]. Long 

time series of high spatial-temporal global land surface BBE will benefit the studies of surface energy 

budget. Cheng et al., [27,28] proposed the algorithms for retrieving global land surface BBE from the 

Advanced Very High-Resolution Radiometer (AVHRR) and MODIS optical data, and produced the 

global eight-day 1 km and 0.05° land surface BBE from 1981 through 2010. This product was known 



Remote Sens. 2014, 6 113 

 

as the Global Land Surface Satellite (GLASS) BBE and released to public in November 2012 [29],  

and can be ordered from the BNU Center for Global Change Data Processing and Analysis 

(http://www.bnu-datacenter.com) and Global Land Cover Facility (http://glcf.umd.edu). GLASS 

emissivity has been validated by limited ground measurements obtained from several field  

experiments [30], and also by comparison with the BBE derived from the ASTER and MODIS 

narrowband emissivity products at regional scales. The objective of this study is to compare GLASS 

BBE, the BBE calculated from NAALSED emissivity and UWIREMIS emissivity at both the global and 

regional scales, and to provide a guideline for the potential users. The rest of this paper is arranged as 

follows. Section 2 introduces the used datasets; Section 3 describes the method of comparing three BBE 

datasets; the results and discussion are presented in Section 4; a brief conclusion is provided in Section 5. 

2. Data 

2.1. GLASS BBE 

The Global Land Surface Satellite (GLASS) BBE is a BBE (8–13.5 μm) product that was derived 

from AVHRR and MODIS optical data with our newly developed algorithms [27,28,31,32] . GLASS 

BBE was composed of two parts: the first is the global eight-day 1 km land surface BBE retrieved 

from MODIS seven black-sky albedos ranging from 2000 through 2010; and the second is the global  

eight-day 0.05° land surface BBE retrieved from the AVHRR visible and near infrared (VNIR) 

reflectance during 1981–1999. In the algorithm used to generate GLASS BBE from MODIS albedos, 

the land surface was classified by five types: water, snow/ice, bare soils, vegetated areas and transition 

zones. Water and snow/ice were determined by the flag in the input data. The latter three types were 

determined by the Normalized Difference Vegetation Index (NDVI) threshold values, i.e., bare soils  

(0 < NDVI ≤ 0.156), vegetated areas (NDVI > 0.156), and transition zones (0.1 < NDVI < 0.2). Note 

there are overlapped areas between bare soils and transition zones, transition zones and vegetated 

areas. The BBE of water and snow/ice was assigned as 0.985 by combining BBE calculated from the 

emissivity spectrum in the spectral library (the ASTER spectral library [33] (http://spclib.jpl.nasa.gov) 

and the MODIS UCSB spectral library (http://www.icess.ucsb.edu/modis/EMIS/html/em.html)) and 

BBE calculated from the emissivity spectra simulated by radiative transfer models [34]. The BBE of 

bare soils, vegetated areas and transition zones were formulated as the linear function of seven MODIS 

narrowband black-sky albedos individually. When the NDVI was less than 0.1 or larger than 0.2, we 

used the formula for bare soils or vegetated areas to calculate their BBE respectively. In the overlapped 

areas between bare soils and transition zones (0.1 < NDVI ≤ 0.156), BBE was the average of those 

calculated by the formulae for bare soils and transition zones, whereas BBE for overlapped areas for 

transition zones and vegetated areas (0.156 < NDVI < 0.2) was the average of those calculated by the 

formulae for transition zones and vegetated areas. The BBE derived from the MODIS albedos was 

validated by the field measurements conducted over desert areas in the United States and China, and 

the absolute difference was found to be 0.02 [27,30]. The method of estimating BBE from AVHRR 

VNIR reflectance data was similar to that used for MODIS optical data. The differences lies in (1) the 

threshold values for identifying three land surface types. A pixel with 0 < NDVI ≤ 0.2 was identified 

as bare soils, a pixel with 0.145 < NDVI ≤ 0.243 was identified as transition zones and a pixel with 
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NDVI > 0.2 was identified as vegetated areas. (2) The input of the algorithms. The inputs of the 

algorithm developed for AVHRR was the reflectance of Channels 1 and 2, whereas the input for the 

algorithm designed for MODIS was seven narrowband black-sky albedos. The BBE derived from the 

AVHRR was consistent with that derived from MODIS data. Comparing the BBE derived from 

AVHRR and MODIS data in 2000, the mean bias and RMS of the difference were 0.001 and 0.01, 

respectively [28]. 

2.2. NAALSED Emissivity 

The North American ASTER Land Surface Emissivity Database (NAALSED) is a mean seasonal 

gridded 100 m emissivity database that composed from ASTER 90 m standard land surface temperature 

and emissivity (LST&E) products over North America [19]. NAALSED includes two seasons, the 

summer season (July–September) and winter season (Jane–March). In the generation of NAALSED, the 

cloud contaminated ASTER pixels are screened out [35]. For each location, NAALSED emissivity is the 

average emissivity of all-clear sky pixels from all the ASTER scenes acquired in the summer and winter 

seasons of 2000–2008. NAALSED also produced the gridded emissivity products on spatial resolutions 

of 1 km, 5 km and 50 km by aggregating 100 m emissivity product. NAALSED V2.0 product consists of 

18 bands; the mean and standard deviation for the five bands surface narrowband emissivity, surface 

temperature, NDVI, a land-water map, the total yield (number of ASTER observations collected at each 

pixel), and geodetic latitude and longitude. NAALSED was validated by the laboratory-measured sand 

emissivity collected at nine pseudo-invariant sand sites in the western United States [36]. The mean 

difference for all nine sites and all five ASTER thermal-infrared (TIR) channels was found to be 0.016, 

which represents approximately a 1 K error in LST retrieval. 

2.3. UWIREMIS Emissivity 

The University of Wisconsin Global Infrared Land Surface Emissivity Database (UWIREMIS) is a 

monthly data set derived from the MODIS composited monthly 0.05° narrowband emissivity product 

(MODIS level 3 operational land surface emissivity product MYD11) by the baseline fit (BF) method [19]. 

The BF method derived global land surface emissivity at ten hinge points (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 

9.3 10.8, 12.1 and 14.3 μm) by adjusting a baseline emissivity spectrum based on MOD11 land surface 

narrowband emissivity product according to a conceptual model of land surface emissivity. Testing by 

the 123 emissivity spectra in the MODIS UCSB emissivity library indicated that the BF-derived 

emissivity generally agrees well with the laboratory-measured emissivity in shape and magnitude. The 

UWIREMIS emissivity could be interpolated between the hinge points and also could be used to 

derive a high spectral resolution emissivity spectrum by virtue of the principal component regression 

and eigenvector from laboratory-measured emissivity spectra. 

3. Methodology 

3.1. Broadband Emissivity Calculation 

The hemispherical emissivity is defined as follows [36], 
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 (1)

where μ is the cosine of view angle, λ is the wavelength, and ε(μ, λ) is the directional emissivity. The 

broadband emissivity can be represented as 

 (2)

where Ts is the surface temperature. Both the satellite emissivity products and field measured 

emissivity are derived from the observations at a certain view angle. Thus, the derived emissivity has 

the directionality. Under the framework of current satellite emissivity retrieval, it is impractical to 

obtain emissivity at enough view angles to calculate hemispherical emissivity. The satellite retrieved 

directional emissivity is usually used in Equation (2), and the emissivity directionality is ignored. The 

directionality was also ignored in the BBE that derived from the existing satellite narrowband 

emissivity products [15,27]. This ignorance will certainly incur some errors in the broadband 

emissivity and surface longwave net radiation estimation [37–39]. 

The NAALSED emissivity and UWIREMIS emissivity are narrowband emissivity products. We 

converted them to BBE at 8–13.5 μm by using the linear functions before the comparison. The 

NAALSED emissivity was converted to BBE by the formula given below [28] 

 (3)

where εNAALSED is the NAALSED BBE, ε10 – ε14 are the five ASTER narrowband emissivities. The  

R-square and root mean square error (RMSE) for Equation (2) are 0.983 and 0.005, respectively. 

Regarding the UWIREMIS emissivity, we developed the conversion formula using the 89 spectra from 

the ASTER spectral library and 109 emissivity spectra from MODIS UCSB emissivity by linear 

fitting. The surface feature types include soil, vegetation, rock, water body and ice/snow. As data 

selected from the ASTER spectral library are directional-hemispheric reflectance, they should be 

converted into emissivity according to Kirchhoff’s law. That is, under thermal equilibrium, the 

relationship between emissivity and reflectance can be expressed as ελ = 1 − ρλ. Based on the above 

spectral data, we calculated the emissivity at ε6 – ε9 by interpolation and calculated the broadband 

emissivity at 8–13.5 μm. The regression analysis is then conducted to obtain the linear relationship 

between the BBE and emissivity at ε6 – ε9. The formula is expressed as follows 

 (4)  

where εUMIREMIS is the UWIREMIS BBE, ε6 – ε9 are the UWIREMIS emissivity at 8.3, 9.3 10.8 and 

12.1 μm. The R-square and RMSE for the fitting formula are 0.983 and 0.005, respectively. 

3.2. Compare to NAALSED BBE 

The primary objective of the ASTER temperature and emissivity separation (TES) algorithm is to 

provide high accuracy narrowband emissivity for large spectral contrast surface types such as soils and 

rocks [40,41]. Some validation work indicated the ASTER narrowband emissivity can achieve high 

accuracy over arid and semi-arid areas [36,42–44]. Therefore, the accuracy of emissivity retrieval for 

soils and rocks is guaranteed. Regarding surface types with small spectral contrast such as water 
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bodies and vegetated areas, the accuracy of emissivity inversion cannot meet the design goal as 

reported by several authors [41,45]. The TES algorithm has been modified several times to 

accommodate low emissivity spectral contrast and error in the measured data and the accuracy has 

been improved over the first version [46]. The ASTER emissivity product is well recognized by the 

remote sensing community and the most accurate emissivity product currently available. The RMSE of 

the converting formula for ASTER is 0.005, which is equal to the RMSE of the converting formula for 

UWIREMIS emissivity and less than that for MODIS. Theoretically, the accuracy of BBE derived by 

converting ASTER emissivity is better than that derived by converting UWIREMIS emissivity and 

MODIS emissivity. Thus, the NAALSED BBE was used as reference to evaluate the GLASS BBE and 

UWIREMIS BBE. The eight-day 1 km sinusoidal projection GLASS BBE was projected to the 0.05° 

Climate Model Grids (CMG). The summer and winter seasons GLASS BBE were composited by 

averaging the data of January–March and July–September from years 2000 through 2008. As large 

year-to-year variability in UWIREMIS emissivity was observed in its early evaluation [3], the summer 

and winter UWIREMIS BBE were composited from the data ranging from the year 2003 through to 2006. 

The spatial coregistration was performed by finding the nearest pixel in GLASS and UWIREMIS 

according to the geolocation of each NAALSED pixel. The spatial-temporal matched GLASS BBE 

and UWIREMIS BBE were compared to NAALSED BBE. 

3.3. Comparison between UWIREMIS BBE and GLASS BBE 

To match the spatial resolution of the UWIREMIS BBE, we designed the code that can mosaic the 

eight-day 1 km sinusoidal projection GLASS BBE into the eight-day 0.05° CMG BBE. Then the 

monthly mean GLASS BBE was calculated by averaging the mosaic BBE within the entire month to 

match the temporal resolution of the UWIREMIS BBE. The spatial distribution patterns of GLASS 

BBE and UWIREMIS BBE in January, April, July and October 2003 for the dominant land cover 

types were analyzed. The seasonal pattern of GLASS BBE and UWIREMIS BBE was analyzed with 

the data from 2003 through 2006. Time series for GLASS BBE and UWIREMIS BBE was compared 

to each other with the data from 2003 through 2010. 

4. Results and Discussion 

4.1. Compare to NAALSED BBE 

Figures 1 and 2 show the comparison results between NAALSED BBE and GLASS BBE for the 

summer season and winter season, respectively. Note that the display difference in the Great Lakes 

was attributed to the use of different water/land masks. The BBE difference was calculated only at the 

pixel with both NAALSED BBE and GLASS BBE. Visually, GLASS BBE was more complete than 

NAALSED BBE, especially for the winter season. There was almost no missing data in the GLASS 

BBE while there were many gaps in the NAALSED BBE. The spatial pattern of NAALSED BBE and 

GLASS BBE were very similar. The BBE was relatively low in western semi-arid areas of the US, for 

example over the quartz-rich deserts of southeastern California, the Colorado Plateau, and the Grand 

Desierto in Mexico. The BBE was relatively high in the eastern agriculture areas of the US. In the 

western US, the GLASS BBE was larger than NAALSED BBE in summer season. In the northern US, 
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the GLASS BBE was larger than NAALSED BBE in winter season. In general, GLASS BBE and 

NAALSED BBE were in good agreement. The bias and RMSE were −0.001 and 0.007 for the summer 

season, –0.001 and 0.008 for the winter season, respectively. 

Figure 1. Comparison between NAALSED BBE and GLASS BBE for summer season.  

(a) GLASS BBE; (b) NAALSED BBE; (c) the difference between GLASS BBE and 

NAALSED BBE; (d) the histogram of the difference. 

(a) (b) 

(c) (d) 

Figure 2. Comparison between NAALSED BBE and GLASS BBE for winter season.  

(a) GLASS BBE; (b) NAALSED BBE; (c) the difference between GLASS BBE and 

NAALSED BBE; (d) the histogram of the difference. 

(a) (b) 
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Figure 2. Cont. 

(c) (d)

The comparison results between NAALSED BBE and UWIREMIS BBE are presented in Figures 3 

and 4. Visually, UWIREMIS BBE was more complete than NAALSED BBE, especially for the winter 

season. The spatial pattern of UWIREMIS BBE and NAALSED BBE were very similar in the western 

US. The BBE was relatively low in the western semi-arid area. The UWIREMIS BBE was larger than 

NAALSED BBE in the western US. The UWIREMIS BBE and NAALSED BBE were quite different 

in the northeastern US. The UWIREMIS BBE was much lower than NAALSED BBE. The difference 

between UWIREMIS BBE and NAALSED BBE was smaller than that between GLASS BBE and 

NAALSED BBE in the western US, where the difference between UWIREMIS BBE and NAALSED 

BBE was larger than that between GLASS BBE and NAALSED BBE in the northeastern US. The bias 

and RMSE were −0.006 and 0.009 for the summer season, −0.008 and 0.011 for the winter season, 

respectively. It is evident that the GLASS BBE was closer to NAALSED BBE than UWIREMIS BBE. 

As described in Section 3.2, the BBE derived by converting ASTER emissivity has the highest 

accuracy in theory. So, the composited NAALSED BBE has the highest accuracy accordingly. Thus, 

the GLASS BBE was accurate than UWIREMIS BBE. Moreover, the validation studies indicated that 

the accuracy of 1 km GLASS BBE is 0.02 [30] whereas the UWIREMIS emissivity and UWIREMIS 

BBE are not validated. 

Figure 3. Comparison between NAALSED BBE and UWIREMIS BBE for the summer 

season. (a) UWIREMIS BBE; (b) NAALSED BBE; (c) the difference between 

UWIREMIS BBE and NAALSED BBE; (d) the histogram of the difference. 

(a) (b) 



Remote Sens. 2014, 6 119 

 

Figure 3. Cont. 

(c) (d)

Figure 4. Comparison between NAALSED BBE and UWIREMIS BBE for the winter 

season. (a) UWIREMIS BBE; (b) NAALSED BBE; (c) the difference between 

UWIREMIS BBE and NAALSED BBE; (d) the histogram of the difference. 

(a) (b) 

(c) (d) 
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4.2. Comparison between UWIREMIS BBE and GLASS BBE 

4.2.1. Spatial Distribution Pattern 

Figure 5 presents the distribution of six dominant land cover types, combined from the 2003 

MODIS Land cover product (MCD12C1). The global distribution of UWIREMIS BBE and GLASS 

BBE for four seasons (January, April, July and October) in 2003 is presented in Figure 6. In general, 

the BBE was very low over arid and semi-arid areas, for example, the Sahara Desert, northwest China, 

and the western United States. Shrub also had a lower BBE. The vegetated areas had relatively high 

BBE. The BBE for vegetated areas usually increases with the increasing of fractional vegetation cover, 

but the seasonal variation of BBE over vegetated areas cannot be seen from Figure 6 visually. In the 

algorithm for producing GLASS BBE, the BBE for snow/ice was assigned as 0.985. The UWIREMIS 

snow/ice BBE was calculated from emissivity at the four hinge points derived from the MODIS snow 

emissivity, which was retrieved by use of a physical-based day/night algorithm. The UWIREMIS 

snow/ice BBE was variable and does not exactly equal 0.985 at most conditions. The colors that 

represent snow/ice BBE were different in Figure 6. From the color of UWIREMIS BBE at Greenland, 

we can see the seasonal variation of snow cover. Most areas of Greenland were covered by snow in 

January and April, and most snow had melted in July. The UWIREMIS BBE was low in April and 

October in the northern part of Europe. This was unreasonable as both the snow and forest had 

relatively high BBE. The snow/ice flag was extracted from the MODIS reflectance product 

(MOD09A1) in the GLASS BBE algorithm. The snow cover variation for four seasons could be 

reflected from the GLASS BBE variations. The high latitude area was covered by snow in January, 

and the snow began to melt with the passage of time. There was almost no snow cover in July except 

in Greenland. By October, snow fall was present at high latitudes. 

Figure 5. Global distribution of six land cover types composited from 2003 MODIS land 

cover product. 
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Figure 6. Geographical distribution of global UWIREMIS BBE and GLASS BBE.  

(a) UWIREMIS January BBE; (b) GLASS January BBE; (c) UWIREMIS April BBE;  

(d) GLASS April BBE; (e) UWIREMIS July BBE; (f) GLASS July BBE; (g) UWIREMIS 

October BBE; (h) GLASS October BBE. 

(a) (b) 

(c) (d)

(e) (f) 

(g) (h)
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4.2.2. Seasonal Pattern 

The monthly average BBE for barren is presented in Figure 7. The Northern Hemisphere (NH) 

GLASS BBE in summer was larger than that in winter and almost constant in the Southern 

Hemisphere (SH). The UWIREMIS BBE exhibited a decline trend from January to December in the 

NH and SH. The variation of both global GLASS BBE and UWIREMIS BBE were similar to variation 

in NH. The soil moisture is the main factor that influenced its emissivity. The soil emissivity increase 

with the increasing of water content before it is Saturation. The soil moisture in summer is higher than 

that in winter in the NH. The soil moisture is not a predictor in the GLASS BBE algorithm. The 

seasonal variation of GLASS BBE over barren is consistent with that of the soil moisture in the NH. 

Thus, the variation of GLASS BBE over barren in the NH seems more reasonable than that of 

UWIREMIS BBE. 

Figure 7. Monthly mean BBE of barren calculated from UWIREMIS BBE (a) and GLASS 

BBE (b) for global, North Hemisphere (NH) and South Hemisphere (SH), respectively. 

(a) (b)

The monthly average BBE for five vegetated land cover types calculated from UWIREMIS BBE 

and GLASS BBE respectively is presented in Figure 8. In order to better analyze the seasonal variation 

of vegetated land cover types, we also calculated the monthly average NDVI using the MODIS 

vegetation index product (MOD13C2) from 2003 through 2006. As shown in Figure 8, the variation of 

NDVI was coincided with the growth season of vegetation in NH (from May to September). The 

NDVI started from a lower value in winter, increased gradually from spring season until July when the 

NDVI achieved the maximum. Then, NDVI decreased gradually and reached a lower value again in 

winter season. In SH, the variation of NDVI is quite small. Generally, the emissivity of vegetation 

canopy is higher than that of bare soil. The emissivity of mixed pixel composed of vegetation canopy 

and bare soil increases with an increase of fractional vegetation cover [47–49]. The fractional 

vegetation cover can be represented by the NDVI. Thus, the seasonal variation of BBE should coincide 

with the seasonal variation of NDVI. However, this is not the case for both GLASS BBE and 

UWIREMIS BBE. 

The seasonal variation of SH GLASS BBE was very small, while the seasonal variation of NH 

GLASS BBE was opposite to that of NDVI, except for savanna. According to the NDVI of savanna, 
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we can judge that savanna belongs to a sparsely vegetated pixel whose emissivity was controlled 

mainly by the emissivity of bare soil. The seasonal variation of NH GLASS BBE resembled a cosine 

curve and the BBE of the growth season is lower than that of the non-growth season in NH for forest, 

grass, and crop. The seasonal variation of GLASS BBE for shrub agreed well with the variation of 

NDVI. The seasonal variation of global GLASS BBE was similar to that of NH GLASS BBE except 

for that for savanna. By contrast, the seasonal variation of UWIREMIS BBE in global and NH was 

similar to that of GLASS BBE for grass and crop. The seasonal variation of global and NH 

UWIREMIS BBE was very small for forest. The seasonal variation of UWIREMIS BBE in SH is larger 

than that of GLASS BBE in SH, and exhibits a peak value in summer for forest, grass, crop and savanna. 

The seasonal variation of UWIREMIS BBE was very small for shrub. In conclusion, the seasonal 

variation of GLASS BBE is more reasonable that that of UWIREMIS BBE and even GLASS BBE 

cannot reflect the seasonal variation of fractional vegetation cover for most vegetated land cover types. 

According to the studies of Wang and Liang [50], the seasonal variation of monthly BBE derived 

by converting MODIS narrowband emissivity product during 2002 and 2006 was very small, and the 

monthly BBE derived by converting ASTER narrowband emissivity during 2000 and 2007 in summer 

was lower than that in winter over six surface radiation budget observing network (SURFRAD) sites 

(Bondville, Boulder, Fort Peck, Goodwin Creek, Penn State and Sioux Falls). We can deduce that 

MODIS narrowband emissivity lack seasonal variation because the used coefficients for converting 

narrowband emissivity to broadband are all positive. Furthermore, the temporal information was not 

considered in the baseline fit method [20]. So, it is not difficult to understand why UWIREMIS BBE 

lacks seasonal variation. As the ASTER BBE in summer is lower than that in winter, GLASS BBE in 

summer is likely to be lower than that in winter for the reason that the algorithm for retrieving GLASS 

BBE established the linear relationship between ASTER BBE and MODIS black-sky albedos. 

Figure 8. Monthly mean BBE of five land cover types calculated from UWIREMIS BBE 

and GLASS BBE for global, North Hemisphere (NH) and South Hemisphere (SH), 

respectively. (a) GLASS Forest BBE; (b) UWIREMIS Forest BBE; (c) MODIS Forest 

NDVI; (d) GLASS Grass BBE; (e) UWIREMIS Grass BBE; (f) MODIS Grass NDVI;  

(g) GLASS Crop BBE; (h) UWIREMIS Crop BBE; (i) MODIS Crop NDVI; (j) GLASS 

Shrub BBE; (k) UWIREMIS Shrub BBE; (l) MODIS Shrub NDVI; (m) GLASS Savanna 

BBE; (n) UWIREMIS Savanna BBE; (o) MODIS Savanna NDVI. 

 
(a) (b) (c) 
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Figure 8. Cont. 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

 
(m) (n) (o) 

We first calculated the average NAALSED BBE, GLASS BBE and UWIREMIS BBE for summer 

and winter seasons with data used in Section 3.2. The results are presented in Table 1. NAALSED 

BBE in summer was lower than that in winter for all the six land cover types. GLASS BBE in summer 

was lower than that in winter for forest, grass and crop, and GLASS BBE in summer was higher than 

that in winter for shrub, savanna and barren. UWIREMIS BBE in summer was lower than that in 

winter for grass, shrub, savanna and barren, and UMIREMIS BBE in summer was higher than that in 

winter for forest and crop. These results indicated that seasonal variation is incorrectly characterized in 
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North America by all three BBE datasets. For NAALSED BBE and UWIREMIS BBE, this poor 

seasonal characterization can be ascribed to poor seasonal variation of the ASTER and MODIS 

narrowband emissivity. Regarding the GLASS BBE, its seasonal variation was influenced by both 

ASTER narrowband emissivity and MODIS spectral albedos. Taking deciduous needle leaf forest land 

cover as an example, we selected a homogeneous site (the land cover remained unchanged from 2001 

through 2010; the central location: 59.8°N, 128.7°E) from MODIS land cover product, and 

downloaded the ASTER narrowband emissivity product, MODIS vegetation index product and 

MODIS albedo product. The MODIS and ASTER data were spatial matched. We averaged the NDVI 

and spectral albedos for 3 × 3 MODIS pixels, and averaged ASTER narrowband emissivity from 33 × 33 

ASTER pixels. The ASTER BBE was calculated from averaged ASTER narrowband emissivities. We 

also calculated the corresponding BBE using GLASS BBE algorithm for vegetation with MODIS 

spectral albedos. The result is shown in Figure 9. As seen from Figure 9a, the NDVI increased 

gradually from spring and achieved the maximum in summer, then begun to decrease and achieved the 

minimum in winter; Figure 9b shows the corresponding MODIS spectral albedos. In growth season, 

the variation of first four albedos was contrary to the variation of NDVI, as the albedos tend to 

decrease with the increasing amount of vegetation. The seasonal variation of last three albedos was 

very small, as they did not reflect the growth of vegetation. Figure 9c presents the calculated ASTER 

BBE. The maximum occurred in March and the minimum appeared in September. Overall, the ASTER 

BBE did not exhibit seasonal variation. The derived GLASS BBE is provided in Figure 9d. Its 

seasonal variation resembled that of MODIS first four albedos. By comparing Figures 9b and 9d, we 

can see clearly that the variation of GLASS BBE is mainly determined by the seasonal variation of 

MODIS spectral albedos. In order to better characterize land surface [51,52], both the ASTER 

narrowband emissivity and MODIS narrowband emissivity products should be improved to consider 

the seasonal variation for vegetated areas. We are improving the GLASS BBE algorithm for vegetation 

to incorporate the seasonal variation of vegetation. 

Table 1. Seasonal average BBE for six land cover types calculated from the data used in 

Section 3.2. 

Data Set Forest Grass Crop Shrub Savanna Barren 

Summer Season 

NAALSED 0.975±0.003 0.966±0.007 0.972±0.005 0.952±0.010 0.972±0.005 0.938±0.017 

GLASS 0. 971±0.003 0. 965±0.005 0. 967±0.004 0. 959±0.007 0. 968±0.002 0. 951±0.017 

UWIREMIS 0.965±0.008 0.962±0.007 0.967±0.006 0.951±0.010 0.959±0.006 0.940±0.015 

Winter Season 

NAALSED 0.977±0.003 0.974±0.005 0.974±0.005 0.960±0.010 0.974±0.002 0.939±0.021 

GLASS 0.977±0.006 0.969±0.009 0.969±0.005 0.957±0.003 0.966±0.002 0.946±0.018 

UWIREMIS 0.963±0.007 0.964±0.006 0.966±0.006 0.956±0.008 0.968±0.005 0.941±0.015 
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Figure 9. The calculated parameters for a homogeneous deciduous needle leaf forest site 

using coregistered MODIS and ASTER data from 2000 through 2010. (a) NDVI;  

(b) MODIS spectral albedo; (c) ASTER BBE; (d) GLASS BBE. 

(a) (b) 

(c) (d) 

4.2.3. Time Series 

The spatial-temporal matched GLASS BBE and UWIREMIS BBE were used to calculate the time 

series from 2003 through 2010. For GLASS BBE, there were regular periodic variations globally for 

crop, forest, grass, shrub and barren. The change trend for savanna was not significant. Regarding 

UWIREMIS BBE, there were regular periodic variations globally for crop. For forest, grass and shrub, 

the times series did not show periodic variations. The change trend of time series for savanna was 

similar to that derived from the GLASS BBE. The regular periodic variations for barren were quite 

weak. The periodic variations of GLASS BBE were stronger than that of UWIREMIS BBE, as we can 

clearly see from Figure 9. Figure 10 displays the temporal variations of GLASS BBE globally for a 

few major land cover types randomly selected from areas with relatively homogeneous land cover. 

There were some minor disagreements of BBE from AVHRR and MODIS data, but overall the  

long-term values were stable and consistent. In comparison, the UWIREMIS BBE values had much 

larger variations for most land cover types. 
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Figure 10. Time series of mean GLASS BBE and UWIREMIS BBE from years 2000–2010. 

(a) Forest; (b) Grass; (c) Crop; (d) Shrub; (e) Savanna; (f) Barren. 

(a)

(b)

(c)

 
(d)
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Figure 10. Cont. 

(e)

(f) 

Figure 11. Long-term global BBE of five land cover types from GLASS BBE and 

UWIREMIS BBE product. (a) Forest; (b) Grass; (c) Crop; (d) Savanna; (e) Barren. 

(a) 

(b)
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Figure 11. Cont. 

(c) 

(d)

(e) 

5. Conclusions 

In this study, we compared three land surface BBE datasets. The first is a new global land surface 

BBE dataset known as GLASS BBE. The left two are NAALSED BBE and UWIREMIS BBE, which 

were calculated from two independent narrowband emissivity products, respectively. NAALSED BBE 

was taken as the reference for the good validation performance of ASTER narrowband emissivity 

product to evaluate the GLASS BBE and UWIREMIS BBE. These two BBE were more complete than 

NAALSED BBE, especially during the winter season. There were almost no gaps in these two BBE 

whereas the gaps in the NAALSED BBE can be easily seen elsewhere. The GLASS BBE was in good 

agreement with the NAALSED BBE for both the summer season and winter season. The bias and 

RMSE were −0.001 and 0.007 for the summer season, −0.001 and 0.008 for the winter season, 

respectively. The difference between UWIREMIS BBE and NAALSED BBE was larger than that 

between GLASS BBE and NAALSED BBE. The bias and RMSE were −0.006 and 0.009 for summer 
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season, −0.008 and 0.011 for winter season, respectively. GLASS BBE was more accurate than 

UWIREMIS BBE. 

The spatial distributions of GLASS BBE and UWIREMIS BBE in 2003 for six land cover types 

were compared. The BBE difference between vegetated areas (e.g., crop, forest, savanna, grass and 

shrub) and non-vegetated (barren) can be easily seen. However, the seasonal variation of BBE for 

vegetated areas was hard to find. The snow cover variation for four seasons could be reflected from the 

BBE variations. The monthly average BBE for six land cover types were calculated from UWIREMIS 

BBE and GLASS BBE ranging from 2003 through 2006, based on which we analyzed the seasonal 

pattern of two BBE datasets. For barren, GLASS BBE can reflect its seasonal variation while 

UWIREMIS BBE failed. Regarding vegetated areas, the seasonal variation of GLASS BBE was more 

reasonable that that of UWIREMIS BBE even GLASS BBE cannot reflect the seasonal variation of 

fractional vegetation cover for most vegetated land cover types. The time series were calculated from 

GLASS BBE and UWIREMIS BBE using the data from 2003 through 2010. The periodic variations of 

GLASS BBE were stronger than those of UWIREMIS BBE. The temporal variations of GLASS BBE 

globally for a few major land cover types randomly selected from areas with relatively homogeneous 

land cover. There were some minor disagreements of BBE from AVHRR and MODIS data, but overall 

the long-term values were stable and consistent. In comparison, the UWIREMIS BBE values had 

much larger variations for most land cover types. 

In conclusion, GLASS BBE is the first global long time series land surface BBE dataset of high 

quality, and can be used in calculating surface longwave net radiation and incorporated in land surface 

models for improving model simulation results. We are improving the algorithm to better characterize 

the seasonal variation of vegetated land cover types. 
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